BROMOCYCLIZATION OF SOME SUBSTITUTED 3-ALLYL-2-THIOHYDANTOINS

E. G. Delegan, I. V. Smolanka, and Yu. V. Melika

UDC 547.789'781:542.944.1

It is known that N-alkenylthioureas with an allylic double bond are cyclized by the action of bromine to 2-thiazoline derivatives [1]. In the present research we have studied the possibility of the preparation of condensed thiazolidine and imidazole systems from 3-allyl-2-thiohydantoin, in which the thiourea fragment enters into the thiohydantoin ring, and an electron-withdrawing group is attached to the same nitrogen atom as the allyl group.

The starting 5-substituted 3-allyl-2-thiohydantoins (I) were obtained by a somewhat modified method [2]. Bromination of I in chloroform or carbon tetrachloride proceeds with simultaneous ring formation to give 2,3,5,6-tetrahydro-6-R-2-bromomethyl-5-oxoimidazo[2,1-b]thiazole (II).

The physical constants and yields of I and II are presented in Table 1.

The ionically and covalently bonded bromine atoms in Π were determined. Compounds Ia,d were obtained by two independent methods and were identified from their melting points, UV and IR spectra, and the results of thin-layer chromatography (TLC) (R_f 0.68, 0.65, respectively). The individuality of the re-

TABLE 1. Physical Constants of the Substances Obtained

Com- pound	5(6) R	mp,°C	R_f a		I I	IR sp ectrum, cm⁻¹				
			A	В	UV spectra, λ _{max} , nm (l og ε)	VG=0	V.N – 11	V _G =N	Vc=c	Yield, %
Ia Ib Ic Id Ie Ila Ilb IIc IId	H CH ₃ C ₃ H ₇ <i>i</i> -C ₄ H ₉ CH ₂ COOH H CH ₃ C ₃ H ₇ <i>i</i> -C ₄ H ₉ CH ₂ COOH	88 ^b 80 ^b 65—66 107 142—143 165—166 220—222 c 167 188	0,70 0,65 0,81	0,88 0,89 0,91 0,82	230 (3,96), 265 (4,11) 230 (3,85), 270 (4,25) 230 (4,48), 265 (4,85) 235 (3,83), 265 (4,15) 235 (4,24), 270 (4,56) 260 (3,17), 320 (2,64) 250 (3,00) 235 (3,69) 250 (3,05)	1740 1755 1760	3220 3205 3240		1640 1640 1650 1660	66 64

aThe following systems were used for chromatography on Silufol:

Uzhgorod State University. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 11, pp. 1572-1573, November, 1974. Original article submitted December 6, 1973.

©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

A) chloroform-methanol (9:1); B) butanol-acetic acid-water (5:2:2)

bThese compounds were previously described in [2].

cWith decomposition.

maining substances was also established by TLC, and their structures were confirmed by the analytical results and the UV and IR spectra.

The IR spectra of I contain a high-intensity band at $1740-1760 \text{ cm}^{-1}$ (C=O). The formation of two-ring compound II from I is confirmed by the absence in its spectrum of absorption bands of an NH bond at $3205-3230 \text{ cm}^{-1}$ and of a C=C bond at $1640-1660 \text{ cm}^{-1}$, which are present in the spectrum of the starting substances, and by the appearance of C-Br stretching vibrations at $570-580 \text{ cm}^{-1}$.

LITERATURE CITED

- 1. I. V. Smolanka and N. P. Man'o, Ukr. Khim. Zh., 36, 589 (1970).
- 2. W. Marckwald, M. Neumark, and R. Stelzner, Ber., 24, 3287 (1891).